Exercise 8

Verify the given linear approximation at $a=0$. Then determine the values of x for which the linear approximation is accurate to within 0.1.

$$
(1+x)^{-3} \approx 1-3 x
$$

Solution

Plugging in $x=0$ to the function yields $(1+x)^{-3}=1$, so $(0,1)$ is the point on the curve that the tangent line goes through. Taking the derivative of the function yields

$$
\frac{d}{d x}(1+x)^{-3}=-3(1+x)^{-4} \cdot \frac{d}{d x}(1+x)=-3(1+x)^{-4} \cdot 1=-3(1+x)^{-4}
$$

Set $x=0$ to get the slope of the tangent line.

$$
\left.\frac{d}{d x}(1+x)^{-3}\right|_{x=0}=-3(1+0)^{-4}=-3
$$

Use the point-slope formula to get the equation of this line.

$$
\begin{gathered}
y-1=-3(x-0) \\
y-1=-3 x \\
y=1-3 x
\end{gathered}
$$

As a result, the linearization to $(1+x)^{-3}$ at 0 is

$$
L(x)=1-3 x .
$$

Now find the values of x for which the linear approximation is accurate to within 0.1.

$$
\begin{gathered}
\left|(1+x)^{-3}-(1-3 x)\right|<0.1 \\
\left|(1-3 x)-(1+x)^{-3}\right|<0.1 \\
-0.1<(1-3 x)-(1+x)^{-3}<0.1 \\
-0.1+(1+x)^{-3}<1-3 x<0.1+(1+x)^{-3}
\end{gathered}
$$

Plot each of these functions versus x.

The linear approximation stays between the curves for

$$
-0.116218<x<0.144067
$$

This is the interval that the linear approximation is accurate to within 0.1 .

